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Extended Ab~tract

1. Introduction

Most numerical methods in fluid dynamica can be claeaified as being

either Lagrangian or EulerIan. An important group of methods, however, is a

combination of both. These methods generally derive from the ALE (Arbitrarv-

Lagrangian-”Eulerian) method of Hirt et al. [1]. A computational cycle in

these methode la divided into two main phasee: a Lagrangian phase and a re-

zone or remap phase (these two terms are used interchangeably). Thn remapping

phaee conservatively tranafera quantities,, calculated in the Lagrangian phase,

from the bgrangian mesh to some other aipecified mesh. For example, in a

given time step the remap phaae may be omitted, in which case the computation

la pureiy Mgrangian, or the remapping may be back to the original mesh, in

which caae the computation IS Eulerian. The remapping step, therefore, corre-

aponde to the effect of the advection terms in Eulerirnn equatione. It may ●l-

so be viewed as a conservative interpolation procedure from one mesh to anoth-

er, and so it 10 also uo~ful in other more general application, ouch as in

adaptive mesh computation,

Formally, euct, a conservative remapping procedure may be specified by

‘k ‘fffvk q(s) dv , (1)

where (+ typically

nante ot momentum,

repraoants one of the conserved quantitiae (ma-s, compo-

total energy) ●saocl,atad with call k of the new mash, q(~)
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represents the corresponding density distribution (mass density, momentum den-

city, ●tc.) in the old mesh, which ie asaumed to be known or specified, and

the integration takea place over the volume of the new cell Vk. These inte-

grals must be ewaluated for eech cell of the mesh and for all variables to be

ramappzti. In general, such a procedure ie too formidable, and so instead it is

in practice replaced by a ““continuous” remapping in which the time step la

limited in such a way that relative mesh displacement is small (a velocity

Courant condition). This pennite the approximation of the changea in C+ in

terms of fluxes acroae cell faces, a clear connection to the differencing of

advection terms. This procedure, as compared to Eq. (l), has two main disad-

vantages: it cfln limit the timm step, and it can be very diffusive because of

the high frequency of remapping (every time step).

The alternative procedure of applying Eq. (1) is very complex for the

came of two arbitrary meshes. The classic problem in Lagrangian hydrodynamics

involves constant cell denbity and a two-dimensional mesh of arbitrary quad-

rilaterals. For this case Eq. (1) reduces to evaluating the volume of overlap

between cells of the IWO ❑eshes. Even for this relatively nimple cnse the

pro’oleti is logically very difficult because of the multiplicity of special

casea to be c~naidered. One published algorithm [2] uses a form of Monte-

Carlo integration (a parricle counting technique) to simplify the logical dif-

ficulties ●t the expense of substantial computational work and storage which

●ra needed If large numbers of particlee art used for accuracy,

A recant development [3] hat permitted exal:t and efficient evaluation of

Eq. (1) by converting the volu~ integral to a surface integral by a clever

uaa of the divergence theorem. ThIo reduction in dimenaionality greatly re-

duceu tho complexity of the problem, The ❑ethod I-Iae h-an worked out and dem-

onstrated for the common caso of constant call dansity, This is the lowest
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accuracy option for the density di~tributlon in Eq. (1) sinc~ it leade to a

large amount of numerical diffusion (corresponding to a donor cell or upwind

differencing of the advection terms), which ie however ameliorated by the fact

that fewer remapping are nece6aary.

In this paper the new method is extended to the caee of a more accurate

density distribution: the den,rity distribution within a cell ie allowed to be

linear, while preserving the average value of deneiity over the cell. The

orientation of thie planar surface is given by the average local density grad-

ient. Such a linear distribution, while more accurate in general, can cause

underahoota or overshoots in regions of rapidly changing deneitiee. This IS

avoided by placing monotonicity limite on the allowable gradients, similar to

those used by Van Leer in one-dirnenaion [4].

2. Outline of the Basic Method

We wi~h to find a vector function F such that we can write

JIf V.~dV=~” q(r)dV
V* - V* -

(2)

for ~ volume V*. Given such a function we can apply the divergence theorem

(3)

to evaluate the integral efficiently. Here Sk in the surface of volume ~~K,

and n ie the outward unit vector normal to the aur:ace, The necessary and

sufficient condition for Eq. (2) to be valid for arbitrary volumaa of inte-

gration are

VoF=q(~),--

and

(4)
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n.F =ne F
-1--2* (5)

That 1s, the normal component of ~ across any surface must be continuous (any

discontinuity can only cccur in the tangential component). Thus, the proce-

dure is to find a funct.’on ~vhich eetisfies Eqs. (4) and (5), and then use it

in Eq. (1) to obtain

(6)

However, Eqe. (4) and (5) do not determine ~ uniquely. A practical method IS

obtained by making the choice F = (P, O, O), I.e., F has only one component.

Aa a result, condition (5) requires hat we u~e a transformed coordinate sys-

tem in which cell faces are perpendicular tc coordinate directions.

To eimplify, we now confine ourselves to two dimen~ione. We introduce a

coordinate transformation from (x,y) to (i,j), characterized by the Jacobian

J(i,j), The eimpleet such tranafor .ation is a bilinear

takes an arbitrary quadrilateral into the unit square.

marized by the following, corresponding to Eqe. (4) and

% - q(i,j)J(i,j) ,

~ = ~Ck pd~ ,

trp.nsformation which

The method is now eum-

(6),

(7)

(8)

where the integration takes place around the cell contour ~ in the positjve,

or counterclockwise direction, Ihe procedure 10 to uae Eq. (7) to ev~~luate

P(i,j) in each cell of the old mesh (P is typically ● simple polynomial), and

than to int~grate P according to I;A. (8) over the faces of the cells of the
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new

one

mesh. ‘Ibis ie done efficiently by computing the integral numerically as

sweeps along the entire length of the mesh lines of i snd j constant.

The more accurate, linear deneity dlatribution in each cell 18 given by

q(~)=~+a~q’(~-~) ~ (9)

t-here ~ la the average density in a cell, ~ IB the cell centroid, Vq 10 a lo-

cal gradient determined from average deneitiee in neighboring cells, and a 18

a lim!ting coefficient (O < a ~ 1) determined by enforcing local monotonicity
\

8uch that the deneicy within each cell doee not lie outside the range of the

average denaitiee in the neighboring cells. We specify a to be

(lo)

where ~max,~min are the maxjmum and minimum values of ~ in nei~hboring cellG,

and qmax’qmin are the maximum and minimum values of q in the given cell.

3. Computational Examples—

To illustrate the technique we will coneider the catie of simple advection

of a scalar. The initial density distribution IS shown in Fig. 1. This is

advected with a circular motion such that each point Cracee a circle with a

radius of 5 units, Tha following figures eliow the results following the com-

pletion of a full revolution. Figure 2 uhowe the severe diffueion which takee

place for the cane of constant cell density at a Courant number of 0.2. Fiu-

ure 3 chows the much better results with the present, more accurate technique,

also at a Courant number of 002. Finally, Fig. 4 illuotratee the further irlI-

provemant possible with the present technique by reducing the number of re-

mapping, here using a remapping Courant number of 1.
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Figure Captions

Fig. 1. Initial density distribution for the advection problem.

Fig. 2. Remapping u~ing ccnstant density in a cell, Courant No. = 0.2.

Fig. 3. Remapping ueing linear deneity d<atrlbut~on in a cell, with monot-
onicity conetrainte. Courant No. m 0.2.

Fig. t Remapping using linear density distribution in a sell, with monot-
onicity constraints. CourPn2 No. = 1.0.



I
u
I

Fig. I
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Fig. 4


